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Abstract—Inter-Component Communication (ICC) enables de-
velopers to create rich and innovative applications in Android
platform. However, some privacy problems occur because of
the interactions among multiple components. Since the flow of
sensitive data across components may be legal or malicious,
it is necessary to perform a precise ICC analysis to identify
the malicious flow of sensitive data. In this paper, we propose
a static taint analysis method, named IccChecker, to identify
the malicious ICC-based privacy leaks in Android applications.
IccChecker first tracks the potential flow of sensitive data across
components and extracts the contextual factors which trigger
the sensitive behavior. By leveraging the context information,
our approach differentiates the malicious privacy leaks from
the legal privacy information exchanges according to the pro-
posed contextual policy. Moreover, we present a comprehensive
assessment with benchmarks and real-world applications. Our
evaluation results with benchmarks demonstrate that IccChecker
improves the precision of ICC-based privacy leak detection.
In the evaluation with real-world applications, our approach
identifies 4 apps with ICC-based privacy leaks among 168 Google
Play apps (2.3%) while 31 apps are identified from 49 malwares
(63.3%).

I. INTRODUCTION

The smart phone has become an indispensable part of
people’s daily life in recent years. Among the different types
of mobile operating systems, Android is extremely popular
and possesses the largest market share currently. However,
there also exist some serious privacy issues in the Android
platform because of the numerous malicious and vulnerable
apps (In the rest of the paper, apps are employed to denote
the applications). As a result, user’s privacy may be leaked
carelessly or maliciously by these apps, which brings great
security threats to the users.

Some static analysis approaches have been proposed [1]–[5]
to mitigate the privacy leaks in Android apps. For example,
Mann et al. [2] present a framework to identify the privacy
leaks from the Android APIs by applying static information
flow analysis techniques. Flowdroid [3], performs static taint
analysis for Android apps by providing a precise model
of the Android component lifecycle and callback methods.
However, these prior works aim at detecting intra-component
privacy leaks by static analysis, which operate within a single
component. Unfortunately, there are privacy leaks which result
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from interactions across multiple components. In Android,
developers usually intend to create rich and innovative apps
by using a set of reusable components. Moreover, Android
presents the ICC mechanism, which enables the apps to
perform frequent interactions between different components.
Also, the ICC mechanism can be maliciously used by mal-
wares and cause the privacy data leakage problem.

To mitigate the threats caused by the ICC-based privacy
leaks, many methods are proposed [6]–[14] to perform the ICC
analysis. Epicc [9] parses the ICC parameters statically, but it
has not considered to link the source and target components
to perform the data flow analysis. DidFail [6] detects the
ICC leaks by leveraging Epicc and static taint analysis [3].
However, the results give a higher false positive rate since it
focuses on the ICC leaks among Activities via implicit Intents.
Amandroid [11] and IccTA [12] are proposed to conduct the
static taint analysis and detect the privacy leaks through the
ICC channels in Android apps. Nevertheless, the taint flow of
sensitive data across components may be legal or malicious,
but they do not differentiate the legal sensitive flow from
the malicious ICC privacy leaks. Since these existing static
analysis approaches give the detection results with high false
positive rates, false positive rate minimization is demanded
to precisely identify the malicious ICC-based privacy leaks in
Android apps.

In this paper, we propose IccChecker, a static ICC analysis
tool, which detects the possible flow of sensitive data across
components in Android apps to identify the malicious ICC-
based privacy leaks. To improve the precision of the ICC anal-
ysis, we build links between the source and target components
by adopting a probabilistic model. The path contexts, which
trigger the ICC privacy leaks, are extracted by performing
data-flow and control-flow analysis. By leveraging the context
information, we propose a contextual policy to differentiate
the malicious ICC privacy leaks from all possible flows of
sensitive data.

Our contributions are as follows:

• We propose IccChecker, a static ICC analyzer to identify
the ICC-based privacy leaks across different components
in Android apps.

• We improve the precision of the ICC analysis by adopting
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the probabilistic model to build ICC links.
• We propose a contextual policy to identify the malicious

ICC privacy leaks according to the path contexts.
• Finally, we carry out a comprehensive assessment of

IccChecker with the benchmarks and real-world apps.
The results demonstrate that IccChecker can effectively
identify the malicious ICC privacy leaks.

II. BACKGROUND

In this section, we present an brief overview of the Android
system and the motivation of the proposed work respectively.

A. Android Overview

1) Component: In Android, apps are created with a set
of reusable components. Android OS provides four types of
important components: Activity, Service, Broadcast Receiver
and Content Provider. Activities dictate the UI and handle the
interactions between the user and the smart phone. Services are
usually used to handle the background processing associated
with apps. Broadcast Receivers receive broadcast messages
from other apps or the Android OS. Content Providers handle
the data and database management issues. Android also present
inter-component communication (ICC) mechanism, which al-
lows different components to exchange data and invoke each
other. Each component can be triggered by its embodying app
or other apps through a set of Android ICC methods.

2) Intent: Different components can communicate with
each other via sending Intents, which are used to request
actions from other components. Intents can be explicit or
implicit. Explicit Intents specify the app and class name of
the target component, while the implicit Intents are usually
used to activate the components in other apps and the fields
for the target component name are left blank. Intents can be
matched with their target component through Intent resolution
process by the Android operating system at runtime. For static
ICC analysis, the Intent need to be resolved statically to link
the source and target component precisely.

3) Permission: To control the access to the privacy data and
system functionalities of the mobile devices, Android employs
a permission-based security mechanism. The corresponding
permissions should be declared in the configuration file An-
droidManifest.xml to perform sensitive operations. Besides,
permission checks are performed to prevent the unauthorized
access at runtime. By default, an Android app can only access
a limited range of system resources.

B. Motivation

1) Privacy Related Behavior: A sensitive behavior can be
described as an information flow path including a sequence of
statements as follows:

Stmtsource → Stmt1 → Stmt2 → ... Stmti → Stmtsink

Sources and sinks are methods which perform sensitive op-
erations. Stmti is the statement which the method i corresponds
to. If the Stmtsource is related with the sensitive data and
protected by permissions, and the sensitive data is sent out

of the app or device by the Stmtsink, this behavior is defined
as privacy-related, which may occur within a single component
or across multiple components. The ICC-based privacy-related
behavior, which occurs across multiple components, is defined
as a special path which contains at least one ICC method in
its statement sequence.

Listing 1. A Motivating Example
1 / / c l a s s m a i n A c t i v i t y
2 void o n C r e a t e ( View v ) {
3 TelephonyManager te lMng = ( TelephonyManager )
4 g e t S y s t e m S e r v i c e ( C o n t e x t . TELEPHONY SERVICE ) ;
5 S t r i n g i d = telMng . g e t D e v i c e I d ( ) ;
6 I n t e n t i 1 = new I n t e n t ( m a i n A c t i v i t y . t h i s ,
7 n o r m a l A c t i v i t y . c l a s s ) ;
8 i 1 . p u t E x t r a ( ” d e v i c e I d ” , i d ) ;
9 s t a r t A c t i v i t y ( i 1 ) ;

10 Date d a t e = new Date ( ) ;
11 I n t e n t i 2 = new I n t e n t ( m a i n A c t i v i t y . t h i s ,
12 sendSMSserv ice . c l a s s ) ;
13 i f ( d a t e . g e t H o u r s ()>23 | | d a t e . g e t H o u r s ()< 5){
14 i 2 . p u t E x t r a ( ” d e v i c e I d ” , i d ) ;
15 s t a r t S e r v i c e ( i 2 ) ;}
16 . . .
17 }
18 / / c l a s s n o r m a l A c t i v i t y
19 void o n S t a r t ( ) {
20 / / l e g a l b e h a v i o r s
21 . . .
22 }
23 / / c l a s s sendSMSserv ice
24 i n t onStartCommand ( I n t e n t i , i n t f l a g s ,
25 i n t s t a r t I d ) {
26 S t r i n g i d = i . g e t E x t r a s ( ) . g e t S t r i n g ( ” d e v i c e I d ” ) ;
27 SmsManager smsMng = SmsManager . g e t D e f a u l t ( ) ;
28 smsMng . sendTextMessage ( number , nul l , id ,
29 nul l , n u l l ) ;
30 . . .
31 }

A concrete example is given in Listing 1. The mainActivity
component obtains the device ID (line 5) which is encapsu-
lated in an Intent and passed to the normalActivity compo-
nent by calling the ICC method startActivity(). Besides, the
mainActivity passes the sensitive data to the sendSMSservice
component by calling the ICC method startService() if the
time is between 11 pm and 5 am. Then, the onCreate() of
sendSMSservice calls SmsManager.sendTextMessage(), which
is considered as a sink, to send the sensitive data out of the
device. Obviously, the behavior from obtaining the sensitive
data in line 5 to sending the data out of the device in line 28
is an ICC-based privacy-related behavior.

2) Malicious ICC Privacy Leak: The apps with sensitive
behaviors may be legal, i.e., the operation of sending the
privacy data out of the app or device may be required by
the apps to realize their functionalities. However, the privacy
data may also be sent out deliberately by the malicious apps,
which is obviously privacy leaks. For example, the behavior
of uploading the GPS coordinates from one device to a third
party is good in Google Map and malicious in other malwares.
In this paper, the malicious privacy leaks, which occur during
the interactions among multiple components, is aimed to be
identified.

III. CONTEXTUAL FACTORS

For apps, the execution of their behaviors depends on the
contextual factors. For example, the user privacy will be sent
out of the devices only if some system events are triggered
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or the environment conditions are satisfied. In the motivating
example, the source method getDeviceId() is activated by a
lifecycle method onCreate() which is considered as an event.
In the component sendSMSservice, the sensitive data is sent
out of the device by the sink method sendTextMessage().
Besides, a critical conditional statement needs to be satisfied
that the system time should be in the specific time period
in the example. The system time is obtained by invoking
the interface getHours(), which is an environment attribute
Calendar information and useful to analyze the anomalies
in apps. In this paper, these contextual factors on the path
of the sensitive behavior are used to identify the malicious
ICC privacy leak. In this section, details of the considered
contextual factors are introduced.

A. Considered Permissions

The corresponding permissions need to be requested by
Android apps to perform sensitive operations. To have a better
understanding of the permission requests in malware, it is
necessary to present the top used privacy-related permissions
in malicious apps. To analyze the permissions, we use the
malware dataset Drebin [15], which is one of the largest and
newest datasets of Android malwares. As shown in Figure
1, the top 25 permissions are presented from the statistical
permissions in Drebin dataset.

Android predefines specific permissions to protect the sys-
tem sensitive resources, including the privacy data and system
functionalities. A permission-protected method may not be
privacy-related. For example, although the popularly used
method ITelephony.call() is protected by the permission an-
droid.permission.CALL PHONE, it is a sensitive method but
not privacy-related. The previous work SUSI [16] specfies a
detailed list of sources sources(SUSI) and sinks sinks(SUSI)
for information flows. In addition, a detailed list of API
calls and corresponding permission mappings is provided by
PScout [17]. In this paper, the set of methods MPScout(p)=
{m1, m2, ..., mn}, where p is the corresponding permis-
sion, and mi is the mapping method in PScout. If mi ∈
sources(SUSI), the corresponding permission p is considered
as privacy-related.

B. Privacy Related Method

A privacy-related behavior can be described as a path
pathprivacy(source, sink), which consists of a source from
which the privacy data originate and a sink to which the data
is sent. These sources and sinks are considered as the privacy-
related methods in this paper.

The methods specified in sinks(SUSI) are used as our
privacy-related sink methods, i.e., Msink = {(m) | m ∈
sinks(SUSI)}. The sinks can be either protected by permission
or not. For example, FileOutputStream.write() is not a per-
mission protected method but is a sink method in sinks(SUSI)
to write the data to a file. Since we focus on the privacy-
related behaviors in Android apps, the methods, which access
the sensitive resources and are protected by permissions, are
selected as our sources. The top 25 privacy-related permissions

Figure 1. Top 25 Permissions in Drebin Dataset

in Figure 1 are represented as a set S(p). The set of privacy-
related source methods is represented as Msource(p) = {(p,m)
| p ∈ S(p), and m ∈ MPScout(p) and m ∈ sources(SUSI)}.

C. Mapping Feature

Apps usually requests multiple permissions to satisfy dif-
ferent functionalities, while each permission is defined to
protect multiple sensitive methods. Besides, each method
may be used in different segment of the code, which is
described as different statements Stmti. Moreover, the sinks
in the information flow paths can be classified into several
different categories. In this paper, the relationships among the
permission, source, Stmtsource and sink category are defined
as the mapping features.

To illustrate the mapping feature, com.kniusw.phoneloc
is selected as an example from the Drebin dataset. As
shown in Figure 2, the permission READ PHONE STATE
is used to protect several methods such as getDeviceId(),
getSubscriberId() and getSimCountryIso(). The statement $r6
= virtualinvoke $r5.<android.telephony.TelephonyManager:
java.lang.String getSubscriberId()>() and $r1 = virtualinvoke
$r4.<android.telephony.TelephonyManager: java.lang.String
getSubscriberId()>() are different statements which corre-
spond to the identical method getSubscriberId(). The sink
method Log.e() is classified as the LOG category while the
method SmsManager.sendTextMessage() belongs to the MES-
SAGE category. Usually, one permission is requested by the
developers for a specified functionality in an app. Intuitively,
the following three features are potentially malicious in An-
droid apps.

F1: For one permission, some mapping methods corre-
spond to pathprivacy(source, sink), while the others
not.

F2: For one method, it is invoked multiple times at
different segments, which can be described as differ-
ent source statements. Some source statements have
sinks while the others not.

F3: For one source, it has different sinks, which belong
to the different categories.
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Path1
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Path2
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Path3 Path4
com.kniusw.phoneloc

android.permission.ACCESS_FINE_LOCATION …

android.permission.READ_PHONE_STATE

android.permission.GET_ACCOUNTS

getSubscriberId()

$r1 = virtualinvoke $r4.<... 
getSubscriberId()>()

$r6 = virtualinvoke $r5.<... 
getSubscriberId()>()

staticinvoke 
<android.util.Log: int e(...)>

($r6, "PLPRO SimCheck")

 virtualinvoke 
$r6.<android.telephony.SmsManager: void 

sendTextMessage(...)>($r1, null, $r2, $r5, null) 

getDeviceId()…getSimCountryIso()

interfaceinvoke 
$r8.<android.content.SharedPreferences$Edit

or putString(...)>("unregSim_details", $r6)

 $r6 = virtualinvoke $r5.<... 
getDeviceId()>()

$r6 = virtualinvoke $r5.<... 
getSimCountryIso()

READ_PHONE_STATE

getSubscriberId()

$r1 = ... 
getSubscriberId()>()

$r6 = ... 
getSubscriberId()>()

staticinvoke 
<android.util.Log: 

int e(...)>($r6, 
"PLPRO SimCheck")

 virtualinvoke 
$r6.<android.telephony.S

msManager: void 
sendTextMessage(...)>

($r1, null, $r2, $r5, null) 

getSimCountryIso()

$r6 =...
 getSimCountryIso()

READ_PHONE_STATE

getSubscriberId() getSubscriberId()

$r6 = ... 
getSubscriberId()>()

sink sink

READ_PHONE_STATE READ_PHONE_STATE

Figure 2. Mapping Feature

Table I
MAPPING FEATURES IN REAL-WORLD APPS

Dataset Total F1 F2 F3
Drebin 100 59 (59%) 58 (58%) 43 (43%)

Google Play 100 20 (20%) 17 (17%) 3 (3%)

There exist four paths in Figure 2. Feature 1 can be
described as F1: ∃ path 1 ∩ path 3. Feature 2 can be described
as F2: ∃ path 2 ∩ path 3. Feature 3 can be described as F3: ∃
path 3 ∩ path 4, and the sinks belong to different categories.

To the best of our knowledge, there is no investigation of
the mapping features in Android apps. To propose the mapping
features, we perform a study on real-world apps. We selected
100 apps from Google Play and 100 apps from the Drebin
malwares randomly as our dataset. Table I shows the number
of apps with the mapping features introduced above. The
results demonstrate that the apps with the three features in
malware dataset significantly outnumber the apps from Google
Play. Since Google Play is the official app store for Android,
the apps from Google Play is considered as benign. Therefore,
the three features can contribute to differentiate the malicious
apps from the benign ones.

D. Activation Event

In Android, a privacy-related behavior can be triggered in
several ways. The graphical user interfaces in an app can
trigger the security-sensitive behavior, e.g., clicking a button
in the app. Besides, an app can be initiated by the Android
system, i.e, the app code is called by Android APIs such as
receiving the broadcast and calling the lifecycle method. In
addition, the interactions on the device interfaces can also
trigger the privacy-related behavior, e.g., pressing the HOME
or BACK button.

The activation event is defined as the event which leads to
a privacy-related method call in an app. The activation events
can be categorized into two categories: UI event and nonUI
event. The events, which trigger the privacy-related behavior
by user interactions (via app or device interfaces), are defined
as UI events, while others are defined as nonUI events.

E. Environment Attribute

There exist many conditional statements in an app code
and the control flows of the privacy-related method calls can
be affected by the values of these conditional statements.
In malware, there will be more conditional statements to

hide the malicious intent. The behavior, which contains the
environmental attribute, is potentially malicious. Inspired by
AppContext [18], the environment attribute in conditional
statement is considered as a contextual factors in this paper.

IV. OUR APPROACH

In this section, we introduce our approach IccChecker,
which is designed to identify the malicious ICC-based privacy
leaks by using the static taint analysis and contextual policy.
Figure 3 illustrates the pipeline of IccChecker. Since this paper
addresses the privacy leaks which result from the interactions
among multiple components, the ICC values in different com-
ponents are extracted firstly. Then, links between the source
and target components are built according to the parsed ICC
values. By leveraging the ICC links, different components
are connected to perform the ICC-based static taint analysis
via code instrumentation technique. To extract the contextual
factors of the privacy-related behaviors, the Android bytecode
is instrumented and an inter-procedure control flow graph
(ICFG) [19] is obtained. Finally, the malicious ICC privacy
leaks are identified by leveraging the results of the ICC-based
static taint analysis and the contextual factors.

Bytecode 
Instrumentation

Taint 
Analysis

Context 
Extraction

ICC Values ICC Links

Sensitive
ICC Behaviors

Malicious ICC
privacy leaks

Figure 3. Pipeline of IccChecker

A. Privacy Related ICC Behavior Extraction

In this part, we detail our approach to build the ICC links
across different components in the analyzed apps. We further
describe the method to extract the privacy-related behavior by
performing taint flow analysis according to the ICC links.

1) ICC Links: An ICC link is defined as a link between a
source component and a target component. A source usually
contains an ICC method which sends Intent to the target. The
Intent describes the characteristics of the target component.
For example, there are two ICC links in the motivating
example. One is mainActivity → normalActivity and the other
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is mainActivity → sendSMSservice. To match the components
which communicate with each other, Android system performs
Intent resolution process according to the Intent values at
runtime. To infer the links effectively in static analysis, the
ICC values (e.g., ICC method, Intent) in the analyzed apps
should be parsed precisely. In our approach, IccChecker uses
the ICC values computed by IC3 [10], which presents a state-
of-the-art approach to fully parse the data field of Intents.

The computed Intents should be matched with the potential
target components to build the ICC links. Since the matching
precision is directly related to the precision of the ICC
analysis, the probabilistic model of ICC in PRIMO [13] is
adopted to accurately build the ICC links according to the
static analysis results in the analyzed apps.

2) Taint Flow Analysis for ICC: Different from other Java-
based programs, there are discontinuities in Android apps due
to the existence of the lifecycle methods, callback methods
and ICC methods. Android apps are component-based, where
each component possesses a series of lifecycle methods (e.g.,
onCreate()) and callbacks methods (e.g., onClick()). Besides,
frequent interactions between different components within an
app or across multiple apps are performed by ICC methods
(e.g., startActivity()). There is no direct call among these three
types of methods in the code of apps since these methods are
handled by the Android system. To perform the taint flow
analysis for ICC precisely, the static analysis must consider
these discontinuities.

IccChecker performs a taint flow analysis by adopting Flow-
Droid [3], which provides a precise modeling of the Android
component lifecycle and callback methods. To implement the
propagation of taint flow between different components, the
ICC links we built and the instrument approach presented in
IccTA [12] are employed to connect different components.
Finally, a set of pathprivacy(source, sink) can be obtained.

B. Context-based ICC Privacy Leak Detection

According to the given sources and sinks, all the privacy-
related ICC behaviors will be extracted, which can be legal
or malicious. To effectively identify the malicious apps that
leak privacy data by ICC, the app analysis should differentiate
the malicious data flows from the legal ones. In this paper,
we adopt the contextual factors to identify the malicious ICC
privacy leaks.

1) Path Context Extraction: Given a pathprivacy(source,
sink), the privacy-related methods APIsource and the APIsink
can be obtained according to the results of Flowdroid. We ob-
tain the corresponding permissions Permsource and Permsink

by matching the APIs and permissions provided by PScout.
Algorithm 1 presents the process of extracting the mapping

features for a given privacy-related path. The algorithm takes
the information flow results from Flowdroid as the inputs and
returns the three features. All the privacy-related methods and
the corresponding statements are recorded by IccChecker. By
comparing the methods/statements in the results of Flowdroid
and the records of IccChecker, the F1 and F2 can be extracted.
F3 can be extracted by the statistical analysis of the inputs.

Algorithm 1 Extract Mapping Features
Input : Results: Information flow results of Flowdroid
Output: F1, F2, F3: three mapping features
1: F1, F2, F3 ← false
2: usedMethods ← getUsedMethods(results)
3: for source ∈ results do
4: leakMethods.add(getMethod(source))
5: leakStmts.add (getStmt(source))
6: end for
7: for pathprivacy(source, sink) do
8: Permsource ← getPermission(source)
9: // all privacy-related methods used in app codes

10: methods ← getMethods(Permsource)
11: for m ∈ methods do
12: if m /∈ leakmethods then
13: F1 = true
14: end if
15: end for
16: APIsource ← getMethod(source)
17: // all APIsource related statements in app codes
18: statements ← getStatements(APIsource)
19: for stmt ∈ statements do
20: if stmt /∈ leakStmts then
21: F2 = true
22: end if
23: end for
24: sinks ← getSinks(source)
25: for sink ∈ sinks do
26: sinkCategories.add(getCategory(sink))
27: end for
28: if sinks.size > 1 and sinkCategories.size > 1 then
29: F3 = true
30: end if
31: end for
32: return F1, F2, F3

For a given pathprivacy(source, sink), the mapping feature
Fmapping =F1 ∪ F2 ∪ F3 .

The activation events are divided into UI event and nonUI
event according to the entry points. All the entry points of
the privacy-related method are recorded and classified by
IccChecker according to the involvement of user interactions.

The control flows from the entry points to the privacy-
related method calls can be affected by the conditional state-
ments with environmental attributes. To precisely extract these
environmental attributes, we adopt the reduced inter-procedure
control flow graph (RICFG) from AppContext [18], which
contains all the paths from an entry point to a privacy sensitive
method call. Given a privacy method call and the corre-
sponding activation event, a set of environmental attributes
of conditional statements are saved.

2) Identifying Malicious ICC privacy Leaks: By leveraging
the extracted path contexts, we propose a contextual policy
to differentiate the malicious and benign privacy-related ICC
behaviors. The contextual policy is presented in Algorithm 2.
The process takes the contextual factors of pathprivacy(source,
sink) as inputs and outputs the malicious behavior.

Since this paper focuses on the privacy-related behaviors,
only the privacy-related path pathprivacy(source, sink), where
the source is protected by permission, is considered as the
potential privacy leaks, i.e., once the Permsource is null, the
path is classified as benign. Otherwise, if the Fmapping is true,
i.e., there exists at least one feature, the path is considered
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Algorithm 2 Identify Malicious ICC Leak
Input : Contextual factors of pathprivacy(source, sink)
Output: Malicious or Benign
1: malicious ← false
2: if permsource 6= null then
3: if Fmapping = true then
4: malicious ← true
5: return malicious
6: end if
7: // all activation events of source and sink methods
8: actEvents ← getActEvents()
9: for actEvent ∈ actEvents do

10: if actEvent ∈ nonUIevent then
11: // all conditional statements of an activation event
12: conditions ← getConditions(Actevent)
13: for Stmtcon ∈ conditions do
14: if Stmtcon ∈ attrEnvs then
15: malicious ← true
16: end if
17: end for
18: end if
19: end for
20: end if
21: return malicious

as a potentially malicious privacy leak. In the algorithm,
actEvents represents all the activation events of the source
and sink methods and nonUIevent represents the set of nonUI
events. The privacy-related behaviors are considered occurring
with the user interactions and classified as benign while the
actEvent /∈ nonUIevent. Otherwise, if the conditional state-
ment Stmtcon of the corresponding activation event belongs
to the environmental attributes attrEnvs, the sensitive path
is classified as malicious. The malicious privacy-related ICC
behavior represents an ICC privacy leak while the benign one
represents a legal behavior.

V. EVALUATION

To evaluate the effectiveness of IccChecker, two evaluations
are conducted. First, IccChecker is compared with an existing
tool IccTA [12]. Then, the effectiveness of IccChecker is
evaluated by identifying the malicious ICC privacy leaks in
real-world apps.

A. Comparison with Existing Tools

The precision of ICC privacy leaks is decisive to the
effectiveness of distinguishing the malicious ones. To eval-
uate the of precision of ICC privacy leak, we compare our
IccChecker with the existing tool IccTA [12], which is the
most recent state-of-the-art tool to detect the ICC leaks. Since
the evaluations in [12] illustrates that IccTA outperforms the
existing tools by achieving a better precision and recall, we
just perform comparisons with IccTA.

1) Benchmarks: To compare our IccChecker with IccTA,
we employ 31 test cases from two benchmarks: DroidBench
and ICCBench. DroidBench is provided by the FlowDroid [3]
for evaluating the information-flow analysis. ICCBench is
another benchmark introduced by Amandroid [11].

2) ICC Leak Test: Table II presents the results in the
detection of the ICC leaks. For the 31 test cases, IccChecker
achieves a precision of 100% and a recall of 87.5% while

Table II
TEST RESULTS ON BENCHMARKS

O = True Positive, * = False Positive, X = False Negative.
Package Name IccTA IccChecker

DroidBench
edu.mit.icc action string operations O * O
edu.mit.icc componentname class constant O O
edu.mit.icc concat action string O * O
edu.mit.icc intent component name O O
edu.mit.icc intent passed through api X X
edu.mit.icc non constant class object O O
edu.mit.icc pass action string through api O * O
edu.mit.icc broadcast programmatic intentfilter O O
edu.mit.icc component not in manifest
edu.mit.icc event ordering X X
lu.uni.snt.serval X X
edu.mit.to components share memory O O O O

ICCBench
com.ksu.passwordPassTest O O
com.ksu.fieldFlowSentivity
com.ksu.explicit nosrc nosink
com.ksu.explicit nosrc sink
com.ksu.explicit src nosink
com.ksu.explicit src sink O O
com.ksu.implicit nosrc nosink
com.ksu.implicit nosrc sink
com.ksu.implicit src nosink
com.ksu.implicit src sink O O
com.ksu.dynamicregister1 O O
com.ksu.dynamicregister2 O O
com.ksu.explicit1 O O
com.ksu.implicit1 O O
com.ksu.implicit2 O O
com.ksu.implicit3 O O
com.ksu.implicit4 O O
com.ksu.implicit5 O O
com.ksu.implicit6 O O

Sum, Precision , Recall and F-Measure
O, higher is better 21 21
*, lower is better 3 0
X, lower is better 3 3
Precision p = O/(O + *) 87.5% 100%
Recall r = O/(O + X) 87.5% 87.5%
F-measure 2pr/(p + r) 0.875 0.93

the precision and recall of IccTA are both 87.5%. There are
three false alarmed leaks in IccTA, which are all caused by
the false links, i.e., the Intent is pointed to a wrong target
component. However, the source and target component are
linked precisely in our IccChecker. Since the false negatives
depend on the ICC values computed by IC3 [10], IccChecker
and IccTA give the same amount of false negatives. However,
IccChecker outperforms IccTA with a better precision since
we adopt a probabilistic model to reduce the false positive
rate of ICC links.

B. Effectiveness

To evaluate the effectiveness of IccChecker, we run Ic-
cChecker on real-world apps and present the experimental
results by giving the identified malicious ICC privacy leaks.

1) Dataset Collection: Two distinct datasets are employed
in this evaluation. The first dataset is MalGenome which is col-
lected by Zhou et al. [20] and includes 1,260 Android malware
samples. The second dataset includes 500 Google Play apps
which are collected from Google market and considered as
benign apps. Since we focus on the ICC-based privacy-related
behavior in this paper, these apps are preprocessed. We first
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Table III
TEST RESULTS ON REAL-WORLD APPS

Dataset the Number of Apps the Number of Behaviors
senIccBehavior priIccBehavior malIccBehavior senSum priSum malSum

MalGenome 49 32 31 (63.3%) 1145 231 168 (14.6%)
GooglePlay 168 13 4 (2.3%) 4117 99 17 (4.1%)

perform a permission filter to select the apps which contains
at least on of the top 25 permissions and the corresponding
APIs. Then we exclude the apps without the ICC methods.

After the preprocessing, we further filter out the apps that
throw exceptions or timeout caused by FlowDroid and IC3.
The final dataset contains 217 apps in total, including 168
benign apps and 49 malicious apps. We apply IccChecker to
these apps to identify the malicious ICC privacy leaks.

2) Experimental Results: The results are shown in Table
III. For MalGenome, 49 apps are reported containing at least
one sensitive behavior across components, with a total of 1145
ICC-based sensitive behaviors. Among the apps with sensitive
ICC behaviors, 32 apps are reported containing at least one
privacy-related behavior by ICC, with a total of 231 privacy
paths. 31 apps are identified by IccChecker that they contain
at least one malicious ICC-based privacy leak, with a total
of 168 privacy paths, i.e., 168 malicious ICC privacy leaks
are identified among 1145 ICC-based sensitive behaviors (or
14.6%) in the malware dataset. For apps from Google Play,
168 apps are reported containing at least one sensitive behavior
across components, with a total of 4117 ICC-based sensitive
behaviors. 13 apps are reported containing at least one privacy-
related behavior by ICC, with a total of 99 privacy leaks.
IccChecker identifies 4 apps containing at least one ICC-
based privacy leak, with a total of 17 privacy leaks. In other
words, 17 malicious ICC privacy leaks are identified among
4117 ICC-based sensitive behaviors (or 4.1%) in Google Play
apps. The results in Table III demonstrate that the potential
malicous apps with ICC privacy leaks identified by IccChecker
in malware dataset (63.3%) are significantly more than that in
Google Play dataset (2.3%).

VI. DISSCUSSION

In this paper, we detect the ICC-based privacy leak behavior.
However, the malicious ICC behaviors may not leak any
information, e.g., making expensive calls to a specific phone
number. We will consider various of ICC behaviors and
explore to detect malicious ones in the future work. Besides,
IccChecker is used to identify the malicious ICC privacy
leaks in single app currently, the leaks resulting from the
inter-app communication (IAC) will also be considered in the
future work. Moreover, due to the lack of ground truth for
determining a security-sensitive method call to be malicious
or benign, we have not presented the false negatives and false
positives in our experiments. We will determine and label the
malicious security-sensitive method calls manually to evaluate
the effectiveness of IccChecker in the future work.

VII. RELATED WORK

Many threats have been presented in Android due to the
interactions between components. The ICC problems have
received numerous attentions in recent years.

To perform ICC analysis precisely, some tools have been
developed [9], [10], [13], [21]. By identifying ICC methods as
well as their parameter values (e.g., action, category), Epicc [9]
is proposed to detect all the potential Intent-based commu-
nication channels between different application components.
IC3 [10] develops an advanced tool which implements the
idea of Epicc. It also parses the URIs (e.g., scheme, host) to
support Content Provider related ICC methods (e.g., query)
and to fully support the data field of Intents. IC3 further
infers the ICC values, which are required for understanding
the interactions among the components of Android apps. To
rank the ICC links based on the likelihood that they are
actual linked, PRIMO [13] overlays a probabilistic model of
ICC on top of the static analysis results by leveraging IC3.
PRIMO aims to perform triage on these links, with the goal
of prioritizing the true positives over the false positives.

Multiple prior works use ICC analysis to mitigate the
threats caused by the ICC-based privacy leaks [6], [11], [12],
[14]. Amandroid [11] and IccTA [12] are closely related to
IccChecker which aim at detecting the ICC-based privacy
leaks in Android apps. Amandroid conducts a static analysis
across the components to detect the privacy leaks. However,
the Content Provider, one of the four Android components,
is not tackled in Amandroid. Amandroid is also insensitive
to some complicated ICC methods such as bindService()
and startActivityForResult(). Compared to Amandroid, IccTA
improves the analysis by building ICC links and compute the
taint paths. However, IccTA produces false positives in the ICC
link building. Besides, IccTA reports all discovered flows from
sources to sinks and does not differentiate the malicious and
benign paths. Therefore, we adopt PRIMO, which overlays a
probabilistic model of ICC on top of the static analysis results,
to infer the ICC links more accurately. We further extract the
context information on the path to identify the malicious paths.

Several approaches are proposed to detect intra-component
privacy leaks in Android apps [1]–[5]. Nevertheless, it focuses
on the single component. Some other tools have been devel-
oped to detect the component vulnerabilities in Android apps.
CHEX [8] is a static analysis tool to automatically vet Android
apps for component hijacking vulnerabilities by linking pieces
of code reachable from entry points. Although CHEX can dis-
cover data flows between the Android application components,
it does not address the data flow through ICC. ComDroid [7],
which is used to analyze apps before release via static analysis,
studies the security challenges in Android communications and
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focuses on the Intent related issues. Unfortunately, it is coarse-
grained and gives false positives. PCLeaks [22] performs
the data-flow analysis to detect potential component leaks,
which includes the component hijacking vulnerabilities and the
component injection vulnerabilities. ContentScope [23] targets
at examining the vulnerabilities of an unprotected Content
Provider. PCLeaks and ContentScope are static analysis tools
which focus on vulnerability mining and analyzing. Neverthe-
less, we focus on the taint data to detect the privacy leaks
across multiple components in this paper.

VIII. CONCLUSION

To identify the malicious privacy leaks among the com-
ponents in Android apps, we propose IccChecker, a static
taint analysis tool. IccChecker extracts the ICC behaviors by
building the ICC links and performing the taint analysis. By
leveraging the path contexts, we propose a contextual policy to
perform the malicious ICC privay leak detection. IccChecker
improves the precision of ICC analysis and differentiates the
malicious ICCs with the legal ones. We present a comprehen-
sive assessment to the proposed approach with benchmarks
and real-world apps. Compared with IccTA, the evaluation
results demonstrate that IccChecker is more effective in finding
the sensitive ICC paths. The assessments with real-world apps
indicate that the potential malicous apps with ICC privacy
leaks identified by IccChecker in malware dataset (63.3%) are
significantly more than that in Google Play dataset (2.3%).
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